Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 12: 745713, 2021.
Article in English | MEDLINE | ID: covidwho-1686471

ABSTRACT

Background: Hypovitaminosis D has been suggested to play a possible role in coronavirus disease 2019 (COVID-19) infection. Methods: The aim of this study is to analyze the relationship between vitamin D status and a biochemical panel of inflammatory markers in a cohort of patients with COVID-19. A secondary endpoint was to evaluate the correlation between 25OHD levels and the severity of the disease. Ninety-three consecutive patients with COVID-19-related pneumonia were evaluated from March to May 2020 in two hospital units in Pisa, in whom biochemical inflammatory markers, 25OHD levels, P/F ratio at nadir during hospitalization, and complete clinical data were available. Results: Sixty-five percent of patients presented hypovitaminosis D (25OHD ≤ 20 ng/ml) and showed significantly higher IL-6 [20.8 (10.9-45.6) vs. 12.9 (8.7-21.1) pg/ml, p = 0.02], CRP [10.7 (4.2-19.2) vs. 5.9 (1.6-8.1) mg/dl, p = 0.003], TNF-α [8.9 (6.0-14.8) vs. 4.4 (1.5-10.6) pg/ml, p = 0.01], D-dimer [0.53 (0.25-0.72) vs. 0.22 (0.17-0.35) mg/l, p = 0.002], and IL-10 [3.7 (1.8-6.9) vs. 2.3 (0.5-5.8) pg/ml, p = 0.03]. A significant inverse correlation was found between 25OHD and all these markers, even adjusted for age and sex. Hypovitaminosis D was prevalent in patients with severe ARDS, compared with the other groups (75% vs. 68% vs. 55%, p < 0.001), and 25OHD levels were lower in non-survivor patients. Conclusions: The relationship between 25OHD levels and inflammatory markers suggests that vitamin D status needs to be taken into account in the management of these patients. If vitamin D is a marker of poor prognosis or a possible risk factor with beneficial effects from supplementation, this still needs to be elucidated.


Subject(s)
COVID-19 , SARS-CoV-2/metabolism , Vitamin D Deficiency , Vitamin D/analogs & derivatives , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , Cytokines/blood , Disease-Free Survival , Female , Humans , Inflammation , Male , Middle Aged , Retrospective Studies , Survival Rate , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/mortality
2.
Free Radic Biol Med ; 180: 236-243, 2022 02 20.
Article in English | MEDLINE | ID: covidwho-1649942

ABSTRACT

The key role of inflammation in COVID-19 induced many authors to study the cytokine storm, whereas the role of other inflammatory mediators such as oxylipins is still poorly understood. IMPRECOVID was a monocentric retrospective observational pilot study with COVID-19 related pneumonia patients (n = 52) admitted to Pisa University Hospital between March and April 2020. Our MS-based analytical platform permitted the simultaneous determination of sixty plasma oxylipins in a single run at ppt levels for a comprehensive characterisation of the inflammatory cascade in COVID-19 patients. The datasets containing oxylipin and cytokine plasma levels were analysed by principal component analysis (PCA), computation of Fisher's canonical variable, and a multivariate receiver operating characteristic (ROC) curve. Differently from cytokines, the panel of oxylipins clearly differentiated samples collected in COVID-19 wards (n = 43) and Intensive Care Units (ICUs) (n = 27), as shown by the PCA and the multivariate ROC curve with a resulting AUC equal to 0.92. ICU patients showed lower (down to two orders of magnitude) plasma concentrations of anti-inflammatory and pro-resolving lipid mediators, suggesting an impaired inflammation response as part of a prolonged and unsolvable pro-inflammatory status. In conclusion, our targeted oxylipidomics platform helped shedding new light in this field. Targeting the lipid mediator class switching is extremely important for a timely picture of a patient's ability to respond to the viral attack. A prediction model exploiting selected lipid mediators as biomarkers seems to have good chances to classify patients at risk of severe COVID-19.


Subject(s)
COVID-19 , Oxylipins , Humans , Inflammation , Retrospective Studies , SARS-CoV-2
3.
J Clin Virol Plus ; 1(3): 100035, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1347690

ABSTRACT

Background: Several ABO blood groups have been associated with the likelihood of infection, severity, and/or outcome of COVID-19 in hospitalized cohorts, raising the hypothesis that anti-A isoagglutinins in non-A-group recipients could act as neutralizing antibodies against SARS-CoV-2. Materials and methods: We run live virus neutralization tests using sera from 58 SARS-CoV-2 seronegative blood donors (27 O-group and 31 A-group) negatives for SARS-CoV-2 IgG to investigate what degree of neutralizing activity could be detected in their sera and eventual correlation with anti-A isoagglutinin titers. Results: We could not find clinically relevant neutralizing activity in any blood group, regardless of anti-isoagglutinin titer. Discussion: Our findings suggest that mechanisms other than neutralization explain the differences in outcomes from COVID19 seen in different ABO blood groups.

4.
Thromb Res ; 204: 88-94, 2021 08.
Article in English | MEDLINE | ID: covidwho-1260871

ABSTRACT

PURPOSE: A derangement of the coagulation process and thromboinflammatory events has emerged as pathologic characteristics of severe COVID-19, characterized by severe respiratory failure. CC motive chemokine ligand 2 (CCL2), a chemokine originally described as a chemotactic agent for monocytes, is involved in inflammation, coagulation activation and neoangiogenesis. We investigated the association of CCL2 levels with coagulation derangement and respiratory impairment in patients with COVID-19. METHODS: We retrospectively evaluated 281 patients admitted to two hospitals in Italy with COVID-19. Among them, CCL2 values were compared in different groups (identified according to D-dimer levels and the lowest PaO2/FiO2 recorded during hospital stay, P/Fnadir) by Jonckheere-Terpstra tests; linear regression analysis was used to analyse the relationship between CCL2 and P/Fnadir. We performed Mann-Whitney test and Kaplan-Meier curves to investigate the role of CCL2 according to different clinical outcomes (survival and endotracheal intubation [ETI]). RESULTS: CCL2 levels were progressively higher in patients with increasing D-dimer levels and with worse gas exchange impairment; there was a statistically significant linear correlation between log CCL2 and log P/Fnadir. CCL2 levels were significantly higher in patients with unfavourable clinical outcomes; Kaplan-Meier curves for the composite outcome death and/or need for ETI showed a significantly worse prognosis for patients with higher (> median) CCL2 levels. CONCLUSIONS: CCL2 correlates with both indices of activation of the coagulation cascade and respiratory impairment severity, which are likely closely related in COVID-19 pathology, thus suggesting that CCL2 could be involved in the thromboinflammatory events characterizing this disease.


Subject(s)
COVID-19 , Thrombosis , Chemokine CCL2 , Chemokines, CC , Humans , Inflammation , Italy , Ligands , Retrospective Studies , SARS-CoV-2
5.
Front Med (Lausanne) ; 7: 466, 2020.
Article in English | MEDLINE | ID: covidwho-732891

ABSTRACT

Background: The Coronavirus disease (COVID-19) pandemic is causing millions of infections and hundreds of thousands of deaths worldwide. Cumulative clinical and laboratory evidence suggest that a subset of patients with severe COVID-19 may develop a cytokine storm syndrome during the course of the disease, with severe respiratory impairment requiring ventilatory support. One field of research nowadays is to identify and treat viral-induced hyperinflammation with drugs used in other clinical conditions characterized by an hyperinflammation status. These drugs might help to reduce COVID19 mortality. Methods: Ruxolitinib, a JAK1 and JAK2 inhibitor, has been successfully used to treat severe immune-mediated diseases, such as graft vs. host disease and Hemophagocytic lymphohistiocytosis. We used ruxolitinib in 18 patients with clinically progressive COVID-19 related acute respiratory distress syndrome, with a primary endpoint to rapidly reduce the degree of respiratory impairment and as a secondary endpoint to rapidly restore the PaO2/FiO2 ratio, as an evaluation of clinical status, and monitoring of drug related Adverse Events. Parameters of inflammation responses and organ functions were assessed and monitored. The treatment plan was ruxolitinib 20 mg bid for the first 48 h and subsequent two-step de-escalation at 10 mg bid and 5 mg bid for a maximum of 14 days of treatment. Results: Our data collection shows a rapid clinical response with no evolution from non-invasive ventilation to mechanical ventilation in 16/18 patients and no response in two patients (overall response rate-ORR 89%). Already after 48 h of ruxolitinib treatment 16/18 patients showed evident clinical improvement, and after 7 days of treatment 11/18 patients showed fully recovered respiratory function (pO2 > 98% in spontaneous breathing), 4/18 patients had minimal oxygen requirement (2-4 L/m), 1/18 patient showed stable disease, and 2/18 patient showed progressive disease. After 14 days, 16/18 patients showed complete recovery of respiratory function (ORR 89%). Compliance to ruxolitinib planned treatment was 100% and no serious adverse event was recorded. In our case series of 18 critically ill patients with COVID-19 and ARDS, administration of ruxolitinib resulted in a clinical improvement that concurred to modify the standard course of disease. Ruxolitinib can be a therapeutic option for patients with respiratory insufficiency in COVID-19 related ARDS. RESPIRE Study (Ruxolitinib for the treatment of acute rESPIratory distREss syndrome, ClinicalTrials.gov Identifier: NCT04361903).

SELECTION OF CITATIONS
SEARCH DETAIL